0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Литий-ионный аккумулятор

Литий-ионный аккумулятор

Литий-ионный аккумулятор (Li-ion) — тип электрического аккумулятора, который широко распространён в современной бытовой электронной технике и находит своё применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны, ноутбуки, цифровые фотоаппараты, видеокамеры и электромобили. Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году.

В настоящее время эффект памяти также обнаружен и в литий-ионных батареях

Это перевод статьи Memory effect now also found in lithium-ion batteries, размещенной учеными на официальном сайте института. Недавно прошла новость о том что и в литий-ионных батареях обнаружен эффект памяти. Просмотрев информацию поподробнее, ничего толкового, кроме коротких новостей (на русском), не нашел. Поэтому привожу перевод статьи с официального сайта.

Литий-ионные аккумуляторы являются высокопроизводительными накопителями энергии, используемые во многих электроприборах. Они могут хранить большое количество энергии в относительно небольшом объеме. Ранее было широко распространено мнение, что они не имеют эффекта памяти. Так эксперты называют отклонение в рабочем напряжение батареи, вызванные неполной зарядкой или разрядкой, в результате которой доступна только часть запасенной энергии, а так же невозможность точного определения уровня заряда аккумулятора. Ученые из Института Пауля Шерера (Paul Scherrer Institute), совместно с коллегами из научно-исследовательской лаборатории Toyota в Японии в настоящее время обнаружили, что широко используемый тип литий-ионных аккумуляторов имеет эффект памяти. Это открытие имеет особенно большое значение в использовании литий-ионных батарей на рынке электрических транспортных средств. Работа была опубликована 14 апреля 2013 года в научном журнале Nature Materials

Многие из наших повседневных устройств, которые работают от батареи, не всегда являются «умными» (smart), как это указано в рекламе, часто имеют эффект памяти. Например, электробритвы или электрические зубные щетки, которые заряжают до того, как они полностью разрядятся, в дальнейшем могут отомстить пользователю. Батареи помнят, что вы использовали только часть их емкости – и, в конце концов, уже не выдают свою полную энергию. Эксперты называют это «эффектом памяти», которая объясняется тем, что рабочее напряжение аккумулятора падает с течением времени из-за неполных зарядно-разрядных циклов. Это означает, что, несмотря на то, что батарея еще не разряжена, напряжение она поставляет иногда слишком низкое, чтобы содержать устройство в рабочем состоянии. Следовательно, эффект памяти, имеет два негативных последствия: во-первых, полезная емкость аккумулятора снижается, а во-вторых корреляция между напряжением и состоянием заряда смещается, так что последнее не может быть надежно определено на основе напряжения. Уже давно известно, что эффект памяти существует в никель-кадмиевых и никель-металлогидридных аккумуляторах. С тех пор как литий-ионные батареи начали успешно продаваться в 1990-х, существование эффекта памяти в этом типе батарей было исключено. Это новое исследование показывает, что мнение было ошибочным.

Последствия эффекта памяти для электрических и гибридных транспортных средств

Эффект памяти и отклонения связанные с ненормальным рабочим напряжением уже были подтверждены на одном из самых распространенных материалов, используемых в качестве положительного электрода в литий-ионных батареях, литий-фосфате железа (LiFePO4). С литий-фосфатом железа, напряжение остается практически неизменным в широком диапазоне от состояния заряда. Это означает, что даже небольшая аномалия в рабочем напряжении может быть неправильно истолкована (как существенное изменение заряда). Или, говоря по-другому: когда состояние заряда определяется по напряжению, большая ошибка может быть вызвана небольшим отклонением в напряжении. Существование эффекта памяти особенно актуально при учете использования литий-ионных батарей в секторе электротранспорта. В гибридных автомобилях, в частности, эффект может возникнуть из-за многих циклов зарядки/разрядки, которые происходят во время нормального режима работы. В таких транспортных средствах, батарея частично перезаряжается во время торможения двигателем и при работе в режиме генератора. И в свою очередь разряжается, и обычно лишь частично, во время фазы ускорения. Многочисленные последовательные циклы частичной зарядки и разрядки приводят к добавлению отдельных небольших эффектов памяти к большему эффекту памяти, так как демонстрирует это новое исследование. Это приводит к ошибке в оценке текущего состояния заряда батареи, в случае, когда состояние заряда рассчитывается на основе текущего значения напряжения.

Почему возникает эффект памяти
Барьер между «богатыми» и «бедными»
Необходима пауза для устранения данного эффекта

Время, которое проходит между зарядкой и разрядкой батареи, играет важную роль в определении состояния батареи в конце этих процессов. Зарядка и разрядка это процессы, которые изменяют термодинамическое равновесия батареи, а это равновесие может быть достигнуто через некоторое время. Ученые обнаружили, что достаточно длительный холостой ход может быть использован для удаления эффекта памяти. Тем не менее, в соответствии с моделью множества частиц, это происходит только при определенных условиях. Эффект памяти исчезнет только при достаточно длительном перерыве между циклами частичной зарядки и последующим полным разрядом. В таких случаях, группы частиц все еще отделены после полного разряда, но находятся на одной стороне потенциального барьера. Таким образом, разделение исчезнет, так как частицы достигнут состояния равновесия, в котором все они будут иметь одинаковое содержание лития. Для предотвращения эффекта памяти необходимо подождать после частичной зарядки и перед неполной разрядкой. В этом случае частицы будут на противоположных сторонах потенциального барьера, это предотвратит их обратное разделение на «литий-богатых» и «литий-бедных».

Читать еще:  Samsung Galaxy J3 (J320H — J320F) – hard reset, сброс настроек

Согласно Петру Новаку (Petr Novak), руководителю Сектора хранения электрохимической энергии в PSI (Electrochemical Energy Storage Section at the PSI) и соавтору публикации, исследование опровергает устоявшееся заблуждение: „Это наше первое исследование, в котором мы специально искали эффект памяти в литий-ионных батареях. Это были просто предположения, что похожего эффекта не возникнет “. Чтобы получить знания через исследования часто плодотворным является сочетание размышления и трудолюбия: «Наши результаты поиска состоят из комбинации критических исследований и тщательного наблюдения. Эффект на самом деле крошечный: относительное отклонение напряжения находится всего в нескольких частицах на тысячу. Но ключевой была идея поиска его вообще. Нормальные тесты батарей обычно исследуют полные, а не частичные циклы зарядки / разрядки.
Однако это недавнее открытие не является последним словом, для будущего использования литий-ионных батарей в автомобилях. Это действительно вполне возможно, что эффект может быть обнаружен и будет учитываться через «умную» адаптацию программного обеспечения в системах управления батареей. Если это окажется успешным, эффект памяти не будет стоять на пути надежного и безопасного использования литий-ионных батарей в электромобилях. Так что теперь, инженеры сталкиваются с проблемой поиска правильного обращения со своеобразной памятью батареи.
Текст: Леонид Лейва (Leonid Leiva)

Следуя модели множества частиц, описанной здесь, предполагается, что зарядка и разрядка батареи происходит частица за частицей. В этом контексте, частицами, мы имеем в виду своего рода „зерна“. Это означает, что материал (LiFePO4) не является одним целым, а скорее состоит из совокупности гранул, кристаллическая структура которых одинаковая, но гранулы имеют мелкие различия в размерах, форме или ориентации. Это типичная структура порошков. С технической точки зрения, они называются „кристаллиты“. Это можно представить, примерно как одинаковые по размеру кубики лежащие рядом. Каждый куб будет слегка повернуты относительно своих соседей, то есть кубики строго не выровнены, но кристаллическая структура (форма шестигранника) является одинаковой для всех.

P.S.
Спасибо Mithgol за инвайт.

От переводчика: Некоторые предложения очень трудно понять (при прочтении с первого раза), я пробовал их переформулировать и упростить, но побоялся, что в данном случае исказится смысл. Поэтому оставил их как есть.
Если есть предложения по более грамотному переводу, буду рад исправить.

Изоляция

Одно из главных преимуществ датчиков Холла заключается в электрической изоляции, которую в контексте проектирования схем и систем называют гальванической развязкой. Принцип гальванической развязки используется всякий раз, когда проект требует, чтобы две схемы связывались таким способом, который предотвращает любую возможность протекания между ними электрического тока. Простой пример, когда цифровой сигнал передается через оптоизолятор, который преобразует импульсы напряжения в импульсы света и таким образом передает данные оптическим способом, а не электрическим. Одной из основных причин для реализации гальванической развязки является предотвращение проблем, связанных с земляными контурами:

Основные принципы проектирования схем предполагают, что взаимосвязанные компоненты совместно используют общую точку земли, на которой предполагается 0 В. В реальной жизни, однако, «земля» состоит из проводников, имеющих ненулевое сопротивление, и эти проводники служат в качестве обратного пути протекания тока от схемы назад к источнику питания. Закон Ома напоминает нам, что ток и сопротивление дадут напряжение, и это падение напряжения в обратном пути означает, что «земля» в одной части схемы не точно такая же по потенциалу, как «земля» в другой части схемы. Эта разница в потенциалах земли может привести к проблемам, начиная от незначительных до катастрофических.

Для предотвращения протекания постоянного тока между двумя схемами используется гальваническая развязка, позволяющая успешно общаться схемам с различными потенциалами земли. Это особенно актуально для измерения токов: низковольтный датчик и обрабатывающая цепь могут понадобиться для контроля больших, изменяющихся в больших пределах токов, например, в цепи привода двигателя. Эти большие, быстро изменяющиеся токи приведут к значительным колебаниям напряжения в цепи обратного пути протекания тока. Датчик Холла позволяет системе контролировать ток привода и защитить схему высокоточного датчика от этих вредных колебаний земли.



Взрывоопасность

Аккумуляторы Li-ion первого поколения были подвержены взрывному эффекту. Это объяснялось тем, что в них использовался анод из металлического лития, на котором в процессе многократных циклов зарядки/разрядки возникали пространственные образования (дендриты), приводящие к замыканию электродов и, как следствие, возгоранию или взрыву. Этот недостаток удалось окончательно устранить заменой материала анода на графит. Подобные процессы происходили и на катодах литий-ионных аккумуляторов на основе оксида кобальта при нарушении условий эксплуатации (перезарядке). Литий-ферро-фосфатные аккумуляторы полностью лишены этих недостатков. Кроме того, все современные зарядные устройства для литий-ионных аккумуляторов предотвращают перезаряд и перегрев вследствие слишком интенсивного заряда. [ источник не указан 91 день ]

Литиевые аккумуляторы изредка проявляют склонность к взрывному самовозгоранию. [2] [3] [4] Интенсивность горения даже от миниатюрных аккумуляторов такова что может приводить к тяжким последствиям. [5] Авиакомпании и международные организации принимают меры к ограничению перевозок литиевых аккумуляторов и устройств с ними на авиатранспорте. [6] [7]

Самовозгорание литиевого аккумулятора очень плохо поддается тушению традиционными средствами. В процессе термического разгона неисправного или поврежденного аккумулятора происходит не только выделение запасенной электрической энергии, но и ряд химических реакций, выделяющих энергию для саморазогрева, кислород и горючие газы. Потому вспыхнувший аккумулятор способен гореть без доступа воздуха и для его тушения непригодны средства изоляции от атмосферного кислорода. Более того, металлический литий активно реагирует с водой с образованием горючего газа водорода, потому тушение литиевых аккумуляторов водой эффективно только для тех видов аккумуляторов, где масса литиевого электрода невелика. В целом тушение загоревшегося литиевого аккумулятора неэффективно. Цель тушения снизить температуру аккумулятора и предотвратить распространение пламени [8] [9] [10] .

Читать еще:  Бэкап по-умному. Выбираем правильную программу резервирования информации — «Хакер»

Эффект памяти

Традиционно считается, что, в отличие от Ni-Cd и Ni-MH аккумуляторов, Li-Ion аккумуляторы полностью избавлены от эффекта памяти. По результатам исследований учёных Института Пауля Шерера (Швейцария) в 2013 году этот эффект был таки обнаружен, но оказался ничтожен. [11]

Причиной его является то, что основой работы батареи являются процессы высвобождения и обратного захвата ионов лития, динамика которых ухудшается в случае неполной зарядки. [12] Во время заряжания ионы лития один за другим покидают частицы литий-феррофосфата, размер которых составляет десятки микрометров. Катодный материал начинает разделяться на частицы с разным содержанием лития. Заряжание батареи происходит на фоне возрастания электрохимического потенциала. В определённый момент он достигает предельного значения. Это приводит к ускорению высвобождения оставшихся ионов лития из катодного материала, но они уже не меняют суммарное напряжение батареи. Если батарея не будет полностью заряжена, то на катоде останется некоторое число частиц, близких к пограничному состоянию. Они практически достигли барьера высвобождения ионов лития, но не успели его преодолеть. При разряде свободные ионы лития стремятся вернуться на место и рекомбинировать с ионами феррофосфата. Однако на поверхности катода их также встречают частицы в пограничном состоянии, уже содержащие литий. Обратный захват затрудняется, и нарушается микроструктура электрода.

В настоящее время просматриваются два пути решения проблемы: внесение изменений в алгоритмы работы системы управления батареями и разработка катодов с увеличенной площадью поверхности.

Требования к режимам заряда/разряда

Глубокий разряд полностью выводит из строя литий-ионный аккумулятор. Также на жизненный цикл аккумуляторов влияет глубина его разряда перед очередной зарядкой и зарядка токами выше установленных производителем. Крайне чувствительны они и к напряжению зарядки. Если его повысить всего на 4 %, то аккумуляторы будут вдвое быстрее терять ёмкость от цикла к циклу. Ток зарядки зависит от разницы напряжений между аккумулятором и зарядным устройством и от сопротивления как самого аккумулятора, так и подводимых к нему проводов. Поэтому увеличение напряжения зарядки на 4 % может приводить к увеличению тока зарядки в 10 раз. Это отрицательно сказывается на аккумуляторе. Он может перегреваться и деградировать.

Старение

Литиевые аккумуляторы стареют, даже если не используются. Соответственно, нет смысла покупать аккумулятор «про запас» или чрезмерно увлекаться «экономией» его ресурса.

Оптимальные условия хранения Li-ion-аккумуляторов достигаются при 40-процентном заряде от ёмкости аккумулятора и температуре 0…10 °C: [13]

Температура, ⁰CС 40 % зарядом, % за годСо 100 % зарядом, % за год
26
25420
401535
602540 % за три месяца

Снижение ёмкости при низких температурах

Как и в других типах аккумуляторов, разрядка в условиях низких температур приводит к снижению отдаваемой энергии, в особенности при температурах ниже 0 ⁰C. Так, снижение запаса отдаваемой энергии при понижении температуры от +20 ⁰C до +4 ⁰C приводит к уменьшению отдаваемой энергии на

5-7 %, дальнейшее понижение температуры разрядки ниже 0 ⁰C приводит к потере отдаваемой энергии на десятки процентов и может приводить к преждевременному исчерпанию ресурса. Химия литий-ионных аккумуляторов более чувствительна к температурам заряжания, и оно оптимально при температурах

+20 ⁰C, а при температурах ниже +5 ⁰C не рекомендовано. [14]

Как и для других типов аккумуляторов, одним из вариантов решения проблемы являются аккумуляторы с внутренним подогревом. [15]

В настоящее время эффект памяти также обнаружен и в литий-ионных батареях

Это перевод статьи Memory effect now also found in lithium-ion batteries, размещенной учеными на официальном сайте института. Недавно прошла новость о том что и в литий-ионных батареях обнаружен эффект памяти. Просмотрев информацию поподробнее, ничего толкового, кроме коротких новостей (на русском), не нашел. Поэтому привожу перевод статьи с официального сайта.

Литий-ионные аккумуляторы являются высокопроизводительными накопителями энергии, используемые во многих электроприборах. Они могут хранить большое количество энергии в относительно небольшом объеме. Ранее было широко распространено мнение, что они не имеют эффекта памяти. Так эксперты называют отклонение в рабочем напряжение батареи, вызванные неполной зарядкой или разрядкой, в результате которой доступна только часть запасенной энергии, а так же невозможность точного определения уровня заряда аккумулятора. Ученые из Института Пауля Шерера (Paul Scherrer Institute), совместно с коллегами из научно-исследовательской лаборатории Toyota в Японии в настоящее время обнаружили, что широко используемый тип литий-ионных аккумуляторов имеет эффект памяти. Это открытие имеет особенно большое значение в использовании литий-ионных батарей на рынке электрических транспортных средств. Работа была опубликована 14 апреля 2013 года в научном журнале Nature Materials

Многие из наших повседневных устройств, которые работают от батареи, не всегда являются «умными» (smart), как это указано в рекламе, часто имеют эффект памяти. Например, электробритвы или электрические зубные щетки, которые заряжают до того, как они полностью разрядятся, в дальнейшем могут отомстить пользователю. Батареи помнят, что вы использовали только часть их емкости – и, в конце концов, уже не выдают свою полную энергию. Эксперты называют это «эффектом памяти», которая объясняется тем, что рабочее напряжение аккумулятора падает с течением времени из-за неполных зарядно-разрядных циклов. Это означает, что, несмотря на то, что батарея еще не разряжена, напряжение она поставляет иногда слишком низкое, чтобы содержать устройство в рабочем состоянии. Следовательно, эффект памяти, имеет два негативных последствия: во-первых, полезная емкость аккумулятора снижается, а во-вторых корреляция между напряжением и состоянием заряда смещается, так что последнее не может быть надежно определено на основе напряжения. Уже давно известно, что эффект памяти существует в никель-кадмиевых и никель-металлогидридных аккумуляторах. С тех пор как литий-ионные батареи начали успешно продаваться в 1990-х, существование эффекта памяти в этом типе батарей было исключено. Это новое исследование показывает, что мнение было ошибочным.

Читать еще:  Обзор Huawei Band 2 Pro — Новый фитнес-трекер Huawei с множеством функций
Последствия эффекта памяти для электрических и гибридных транспортных средств

Эффект памяти и отклонения связанные с ненормальным рабочим напряжением уже были подтверждены на одном из самых распространенных материалов, используемых в качестве положительного электрода в литий-ионных батареях, литий-фосфате железа (LiFePO4). С литий-фосфатом железа, напряжение остается практически неизменным в широком диапазоне от состояния заряда. Это означает, что даже небольшая аномалия в рабочем напряжении может быть неправильно истолкована (как существенное изменение заряда). Или, говоря по-другому: когда состояние заряда определяется по напряжению, большая ошибка может быть вызвана небольшим отклонением в напряжении. Существование эффекта памяти особенно актуально при учете использования литий-ионных батарей в секторе электротранспорта. В гибридных автомобилях, в частности, эффект может возникнуть из-за многих циклов зарядки/разрядки, которые происходят во время нормального режима работы. В таких транспортных средствах, батарея частично перезаряжается во время торможения двигателем и при работе в режиме генератора. И в свою очередь разряжается, и обычно лишь частично, во время фазы ускорения. Многочисленные последовательные циклы частичной зарядки и разрядки приводят к добавлению отдельных небольших эффектов памяти к большему эффекту памяти, так как демонстрирует это новое исследование. Это приводит к ошибке в оценке текущего состояния заряда батареи, в случае, когда состояние заряда рассчитывается на основе текущего значения напряжения.

Почему возникает эффект памяти
Барьер между «богатыми» и «бедными»
Необходима пауза для устранения данного эффекта

Время, которое проходит между зарядкой и разрядкой батареи, играет важную роль в определении состояния батареи в конце этих процессов. Зарядка и разрядка это процессы, которые изменяют термодинамическое равновесия батареи, а это равновесие может быть достигнуто через некоторое время. Ученые обнаружили, что достаточно длительный холостой ход может быть использован для удаления эффекта памяти. Тем не менее, в соответствии с моделью множества частиц, это происходит только при определенных условиях. Эффект памяти исчезнет только при достаточно длительном перерыве между циклами частичной зарядки и последующим полным разрядом. В таких случаях, группы частиц все еще отделены после полного разряда, но находятся на одной стороне потенциального барьера. Таким образом, разделение исчезнет, так как частицы достигнут состояния равновесия, в котором все они будут иметь одинаковое содержание лития. Для предотвращения эффекта памяти необходимо подождать после частичной зарядки и перед неполной разрядкой. В этом случае частицы будут на противоположных сторонах потенциального барьера, это предотвратит их обратное разделение на «литий-богатых» и «литий-бедных».

Согласно Петру Новаку (Petr Novak), руководителю Сектора хранения электрохимической энергии в PSI (Electrochemical Energy Storage Section at the PSI) и соавтору публикации, исследование опровергает устоявшееся заблуждение: „Это наше первое исследование, в котором мы специально искали эффект памяти в литий-ионных батареях. Это были просто предположения, что похожего эффекта не возникнет “. Чтобы получить знания через исследования часто плодотворным является сочетание размышления и трудолюбия: «Наши результаты поиска состоят из комбинации критических исследований и тщательного наблюдения. Эффект на самом деле крошечный: относительное отклонение напряжения находится всего в нескольких частицах на тысячу. Но ключевой была идея поиска его вообще. Нормальные тесты батарей обычно исследуют полные, а не частичные циклы зарядки / разрядки.
Однако это недавнее открытие не является последним словом, для будущего использования литий-ионных батарей в автомобилях. Это действительно вполне возможно, что эффект может быть обнаружен и будет учитываться через «умную» адаптацию программного обеспечения в системах управления батареей. Если это окажется успешным, эффект памяти не будет стоять на пути надежного и безопасного использования литий-ионных батарей в электромобилях. Так что теперь, инженеры сталкиваются с проблемой поиска правильного обращения со своеобразной памятью батареи.
Текст: Леонид Лейва (Leonid Leiva)

Следуя модели множества частиц, описанной здесь, предполагается, что зарядка и разрядка батареи происходит частица за частицей. В этом контексте, частицами, мы имеем в виду своего рода „зерна“. Это означает, что материал (LiFePO4) не является одним целым, а скорее состоит из совокупности гранул, кристаллическая структура которых одинаковая, но гранулы имеют мелкие различия в размерах, форме или ориентации. Это типичная структура порошков. С технической точки зрения, они называются „кристаллиты“. Это можно представить, примерно как одинаковые по размеру кубики лежащие рядом. Каждый куб будет слегка повернуты относительно своих соседей, то есть кубики строго не выровнены, но кристаллическая структура (форма шестигранника) является одинаковой для всех.

P.S.
Спасибо Mithgol за инвайт.

От переводчика: Некоторые предложения очень трудно понять (при прочтении с первого раза), я пробовал их переформулировать и упростить, но побоялся, что в данном случае исказится смысл. Поэтому оставил их как есть.
Если есть предложения по более грамотному переводу, буду рад исправить.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector